Phases of Matter (chapter 13+14)

Phases of Matter

- Dependent on particle \qquad and available \qquad
- Three phases
- Solid = particles \qquad arranged, no space
- Liquid = particles spaced out, move \qquad
- Gas = particles \qquad distributed, \qquad apart

Change of Phase

- Moving from one phase to another
- Dependent on:
- \qquad
- \qquad
- \qquad (gases only)

Melting/Boiling

-SOLID \longrightarrow LIQUID \longrightarrow GAS
\qquad

- Occurs as temperature \qquad
- Energy absorbed (\qquad

Sublimation

-SOLID GAS

- Occurs as temperature \qquad
-Energy absorbed
-Example: \qquad

Condensation/Freezing

- GAS \longrightarrow LIQUID \longrightarrow SOLID
-Occurs as temperature \qquad
-Energy released (

Deposition

- GAS

\qquad SOLID
-Occurs as temperature \qquad
-Energy released
-Example: \qquad

Endothermic $\uparrow /$ Exothermic \downarrow changes

Kinetic Molecular Theory (KMT)

- A model of an ideal gas used to explain the behavior of gases
- Important components:
- Gas moves in a \qquad motion
- Gas molecules are separated by \qquad relative to their size
- Gas molecules have \qquad forces between them
- Gas molecules have \qquad that result in transfer of \qquad (law of conservation of \qquad

Kinetic Molecular Theory (KMT) continued

- The average kinetic energy of gas molecules is dependent on \qquad
- Equal volumes of gases at the same temperature and pressure have the same \qquad
- (This is Avogadro's Law)
- Example of Ideal Gases: \qquad gases (group 18)

Characteristics of Gases

- Gases lack definite \qquad and \qquad
- Gases have the ability to \qquad in all
- Gases are \qquad
- Gases \qquad and \qquad with one another
- Diffusion- movement of molecules from \qquad to \qquad concentration
- Effusion- movement of molecules under
\qquad through a \qquad (balloons) ${ }_{11}$

Characteristics of Gases continued

- Most gases are real, not ideal gases
- Real gases do not follow KMT
- Real gases can be changed into an ideal gas by either \qquad or
- Will otherwise liquefy under high \qquad or low \qquad

Standard Temperature and Pressure (STP)

- Reference points when studying gas
- Defined as \qquad AND __ ${ }^{\circ} \mathrm{C}$ (or __K)
- ___mm of Hg or \qquad Torr or \qquad kPa are other standard pressure values that may be used
- Found on Table __ in the Chemistry Reference Tables

The Gas Laws MUST USE KELVIN TEMPS!!!

- Simple mathematical relationships involving:

$$
-
$$

\qquad

- \qquad
- \qquad
- \qquad
- You will need to convert to K using the formula provided from Table \qquad

$$
\mathrm{K}={ }^{\circ} \mathrm{C}+273
$$

\qquad 1 \qquad relationship of gases

- __ of a gas is proportional to \qquad
- as one variable increases, the other \qquad

Pressure	Volume
1 atm	-
-	-100 ml
4 atm	-

$\mathrm{PV}=\mathrm{K}($ where K is a constant $) \rightarrow$

$$
P_{1} V_{1}=P_{2} V_{2}
$$

Boyle's Law example questions

1) The volume occupied by a gas at STP is 250 L . At what pressure in kPa will the gas occupy 1500L? (assume Temperature and \# of particles constant)

- Given $=V_{1}=250 \mathrm{~L}$

$$
P_{1}=101.3 \mathrm{kpa}
$$

$V_{2}=1500 \mathrm{~L}$
$\mathrm{P}_{2}=\mathrm{X}$
$-\left(P_{1}\right)\left(\mathrm{V}_{1}\right)=\left(\mathrm{P}_{2}\right)\left(\mathrm{V}_{2}\right)$

Boyle's Law example questions

2) A balloon with helium gas has a volume of 500 mL at a pressure of 1atm, The balloon reaches an altitude of 6.5 km where the pressure is 0.5 atm .
Assuming the temperature hasn't changed, what volume does the gas now occupy in the balloon?

Boyle's Law example questions

3) A gas has a pressure of 1.26 atm and occupies 7.40 L . If the gas is compressed to 2.93 L , what will its new pressure be, assuming constant temp?

Charles Law

\qquad relationship of gases

- the ___ of a \qquad of a gas at pressure is directly related to

- às one variable increases, so does the other

Volume	Temperature
10 mL	100 K
20 mL	200 K
30 mL	300 K

Charles Law example questions

1. A sample of neon gas occupies a volume of 752 mL at $25^{\circ} \mathrm{C}$. What volume will the gas occupy at $50^{\circ} \mathrm{C}$?
$-25^{\circ} \mathrm{C}=298 \mathrm{~K}$
$-50^{\circ} \mathrm{C}=323 \mathrm{~K}$
$\underline{V}_{1}=\underline{\mathrm{V}}_{2}$
$\mathrm{T}_{1} \quad \mathrm{~T}_{2}$

Charles Law example questions

2. A Balloon filled with oxygen gas occupies a volume of 5.5 L at $25^{\circ} \mathrm{C}$. What volume will the gas occupy at $100^{\circ} \mathrm{C}$?
3. A sample of nitrogen gas is contained in a piston with a freely moving cylinder. At $0^{\circ} \mathrm{C}$ the volume of gas is 375 mL . At what temperature must the gas be heated to occupy a volume of 500 mL ?

Gay-Lussac's Law

- \qquad relationship of gas
- the \qquad of a given gas is directly related to

pressure
- as one variable increases, so does the other

Gay-Lussac's Law example questions

1. The pressure exerted by a gas is 93 kPa at 200 K . What pressure does the gas exert at 500K?
$\underline{P}_{1}=\underline{P}_{2}$
$\begin{array}{ll}\mathrm{T} & \mathrm{T}_{2}\end{array}$

Gay-Lussac's Law example questions

2. The pressure of a gas is 50,000 pascals at $327^{\circ} \mathrm{C}$. At what temperature will the pressure be 25 kpa ?

- $50,000 \mathrm{~Pa}$ * $1 \mathrm{kPa} \rightarrow$

1000Pa

Combined Gas Law

- expresses the relationship between

$$
\frac{\mathrm{P}_{1} \underline{\mathrm{~V}}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \underline{V}_{2}}{\mathrm{~T}_{2}}
$$

Combined Gas Law example question

1. A gas occupies 12 cubic decimeters at 0.5 atm and 300 k . At what temperature will the gas occupy 6 cubic decimeters at 0.25 atm ?

- $\underline{P}_{\underline{1}}-\underline{V}_{1}=\frac{\mathrm{P}_{2} \underline{V}_{2}}{\mathrm{~T}_{2}}$

Combined Gas Law example question

2. A gas occupies a volume of 250 mL at $50^{\circ} \mathrm{C}$ at 99.7 kPa . What temperature will be required to change the volume to 300 mL if the pressure is increased to 150 kPa ?

- $\underline{P}_{\underline{1}}-\underline{V}_{1}=\frac{\mathrm{P}_{2} \underline{V}_{2}}{\mathrm{~T}_{2}}$

Avogadro's Law

- at the same \qquad and \qquad -' equal \qquad of any given gas contain an equal number of \qquad
- Molar Volume = \qquad of any gas at standard temperature and pressure
- $0^{\circ} \mathrm{C}$ and 1ATM

	CO	O_{2}	Ar
Pressure	100 torr	100 torr	100 torr
Volume	5.0 L	5.0 L	5.0 L
Temp.	800 K	800 K	800 K
\#of particles	n	n	n

Vapor Pressure

- pressure exerted by a \qquad in with it's corresponding \qquad at a given
- as temperature of liquid \qquad , average kinetic energy
- as average KE increases, there is an increase of molecules \qquad
- as number of gas molecules increases, vapor pressure \qquad

