

Nuclear Energy Energy ______ as a result of a change in the _____ of an atom Transmutation: The atomic nucleus of one element is changed into the nucleus of a _____ element (# of protons change, thus atomic _____ changes.) Nucleus made of Nucleons Protons Neutrons

Radioisotopes and the Band of Stability

- an isotope that is

 and thus
 radioactive (usually element above #_____
 (Table ___)
- n/P ratios above one are often unstable
- Band of stability exists showing areas of stable/unstable isotopes

Types of Particles Table ____

Table O Symbols Used in Nuclear Chemistry

Name	Notation	Symbol	
alpha particle	$^4_2\mathrm{He}$ or $^4_2\alpha$	α	
beta particle (electron)	$_{-1}^{0}e$ or $_{-1}^{0}\beta$	β-	
gamma radiation	0γ	γ	
neutron	$_{0}^{1}$ n	n	
proton	¹ ₁ H or ¹ ₁ p	P	
positron	0 e or 0β	β+	

Alpha radiation: symbol \rightarrow α

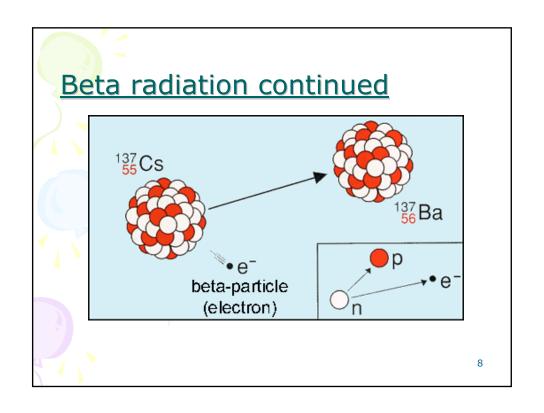
- particle is ___ protons/__ neutrons= __ amu and has a ___ charge.
- notation is similar to a Helium nucleus

$$\frac{4}{2}$$
 or $\frac{4}{2}$ α

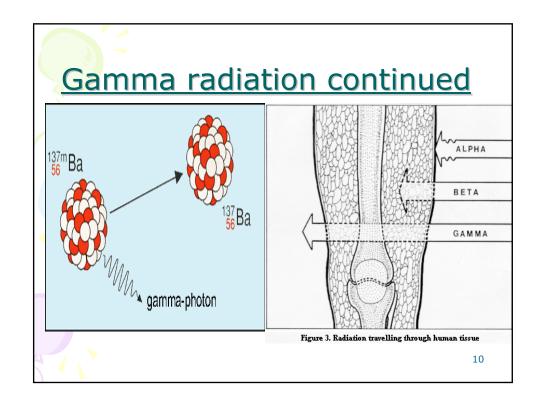
- least harmful radiation:
 - i- blocked by _____
 - ii- ____ penetrating power
 - iii- travels _____ distances ~3ft/1m
 - iv- speed is _____

5

Alpha radiation continued 226 Ra 226 Rn 2 He

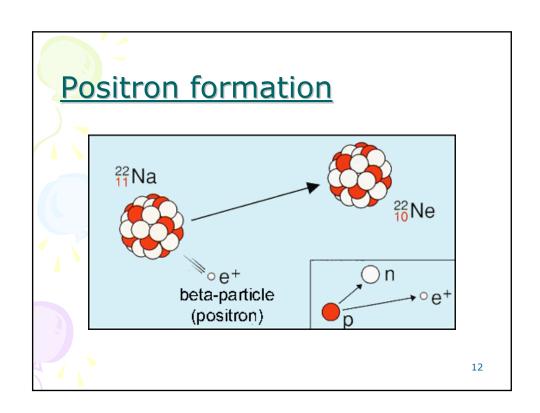

Beta radiation: symbol → β
• particle is basically an _____ = 0 amu and has a ____ charge

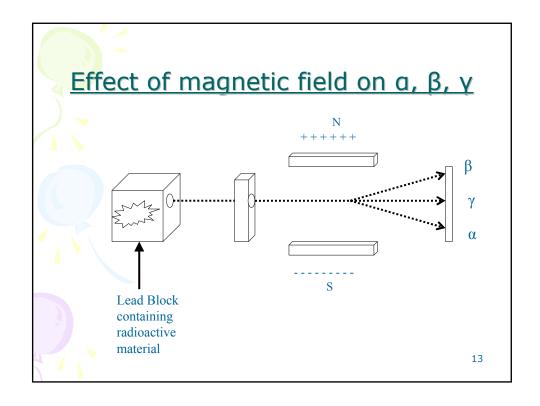
• notation


O or O β

-1 e or O β

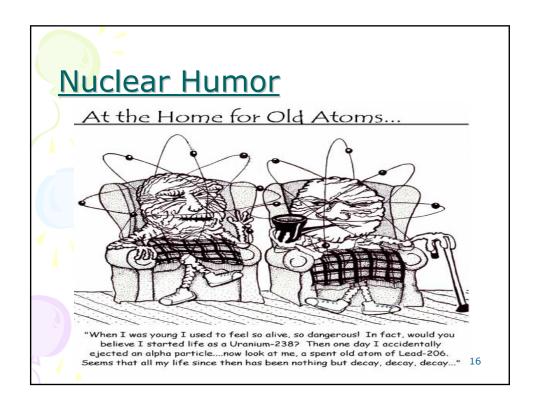
• More dangerous than alpha i- blocked by ____ penetrating power iii- travels about ____ iv- speed ____




Gamma radiation: symbol → γ is _____ (but is energy) that has no ____ and no ___ notation 0 γ • most harmful-similar to x-rays i-blocked by ____ (5-10cm), ____ (2-4ft) or ____ (10-15ft) ii- travels ____ than a and β iii- travels ____ iv- causes ____ to be destroyed

Neutron, Proton, Positrons

- Neutron $\frac{1}{0}n$ mass of ___ with ___ charge
- Proton ¹₁H or ¹₁P Mass of _/charge of ___
- Positron ⁰₊₁e or β⁺ Mass of _/charge of __
 results when a _____ converts to a



Radioactive Decay: By transmutation
 Natural/spontaneous transmutation Particles given off Happens
- Elements than 83 will go through a series of transmutations until they form by or decay
- Alpha decay: ²²⁶ Ra→ +
- Beta decay: 60Co→ + ²³⁴ Pa→ + ₁₄

Transmutation continued

- Artificial transmutation
 - Particles are _____ to an existing atom
 - ${}^{1}\text{H}$ + ${}^{9}\text{Be} \rightarrow _{---}$ + ${}^{6}\text{Li}$
 - ^{238}U + ^{12}C \rightarrow 6(____) + ^{244}Cf
 - $^{249}\text{Cf} + ^{10}\text{B} \rightarrow ^{257}\text{Lr} + ^{2}(\underline{\hspace{1cm}})$
 - **In nuclear equations, both _____ and ____ must be conserved and equal**

Half-Life

- Time required for _____ of the atoms in a radioactive sample to _____ to a stable form
- Formula to determine amount left after each half life is $(1/2)^n$, where n = the #of half lives

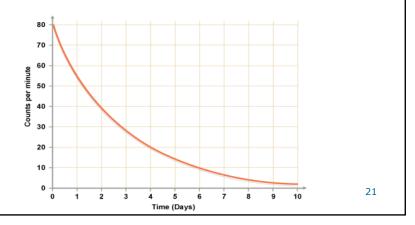
 $1 \rightarrow (1/2)^1 \rightarrow \underline{\hspace{1cm}} 6 \rightarrow (1/2)^6 \rightarrow$

 $2 \rightarrow (1/2)^2 \rightarrow$ $7 \rightarrow (1/2)^7 \rightarrow$

Nuclide	Half-Life	Decay Mode	Nuclide Name
198Au	2.69 d	β-	gold-198
14C	5730 y	β-	carbon-14
37Ca	175 ms	β+	calcium-37
60Co	5.26 y	β-	cobalt-60
137Cs	30.23 y	β-	cesium-137
53Fe	8.51 min	β+	iron-53
220Fr	27.5 s	cx	francium-220
зн	12.26 y	β-	hydrogen-3
131 _I	8.07 d	β-	iodine-131
37K	1.23 s	β+	potassium-37
42K	12.4 h	β-	potassium-42
85Kr	10.76 y	β-	krypton-85
16N	7.2 s	β-	nitrogen-16
¹⁹ Ne	17.2 s	β+	neon-19
32P	14.3 d	β-	phosphorus-32
239Pu	$2.44 \times 10^{4} \text{ y}$	OZ.	plutonium-239
226Ra	1600 y	cx	radium-226
222Rn	3.82 d	cx	radon-222
90Sr	28.1 y	β-	strontium-90
99Te	$2.13 \times 10^{5} \text{ y}$	β	technetium-99
232Th	$1.4 \times 10^{10} \text{ y}$	α	thorium-232
233U	$1.62 \times 10^{5} \text{ y}$	ox.	uranium-233
235U	$7.1 \times 10^{8} \text{ y}$	ox.	uranium-235
238U	$4.51 \times 10^{9} \text{ y}$	α	uranium-238

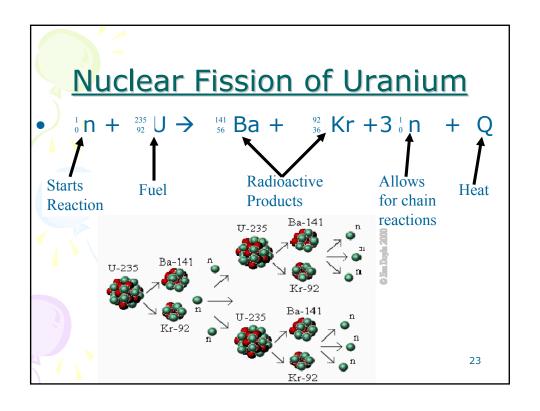
To determine # of half-lives passed (n)

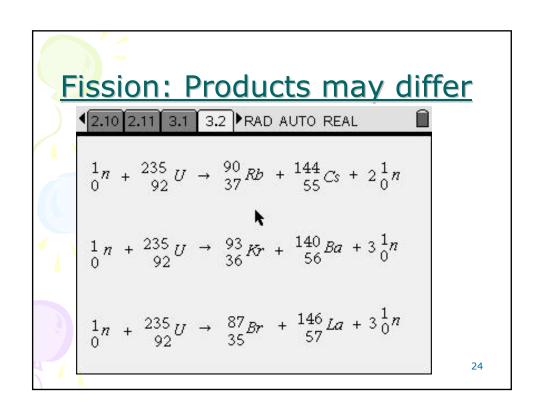
- use the following: <u>Total Time elapsed</u> Half-Life of isotope
- Ex. Phosphorus -32 has a half life of 14.3
 days, How many mg are left after 57.2
 days if we started with 4.0 mg?


19

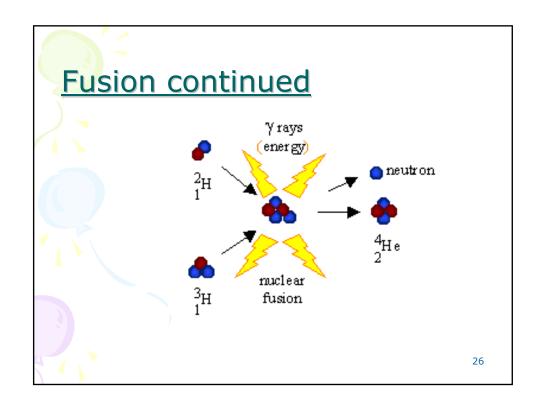
Half Lives continued

Ex. How many grams of a 34.0g
 sample of Neon-19 will remain after
 minute and 43.2 seconds?


Half Life curves


 Shape is generally the same for all half life curves

Fission/Fusion


- _____ producing Reactions
- Mass defect= in these Rxn's, the reactants mass is _____ than the resulting product mass.
 - Loss represents a conversion of mass into energy → _____
- Fission: large unstable atom is
 ____ into smaller ones (a particle is
 needed to start this _____ reaction)

Fusion

- 2 small nuclei combine to form or heavier one.
 - ${}^{2}_{1}$ H + ${}^{2}_{1}$ H \rightarrow ${}^{4}_{2}$ He + Q
 - $-4^{+}_{1} H \rightarrow {}^{4}_{2} He + 2^{+}_{1} e$
 - takes place in the ____ under high ____
 and ____, producing an immense amount of energy

Fusion: Good vs. Bad

- Benefit: tremendous amounts of
 and no radioactive
- Problem: high _____ needed.
 Extreme high ____ and ___ to get (+) charged protons to fuse together.

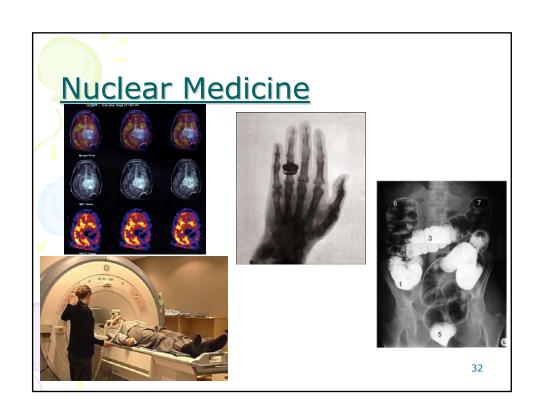
27

Nuclear Reactors

- Moderators: maintain _____ of reaction.

down reaction

and used to slow down


- Work along with moderator to prevent core

29

meltdown

Nuclear Reactors continued Shielding: Protection Reaction occurs in _____ Internal shield: _____lining protects walls of reactor from radiation damage External shield: high density _____ for radiation containment

Nuclear Medicine continued

- Radioactive isotopes are used to help diagnose medical problems
 - Used as _____ for imaging
 - Material used must have a
 half life to prevent
 additional damage to the system
 - ______for digestive tract
 - _____ for thyroid

33

Y-rave mri's cat econe atc. also use

Nuclear Medicine continued Radiation Therapy - Kills ____ cells - Inserted into effected region (but may also kill ____) May be ____ cancer - ___ cancer - ___ cancer