

Atomic and Formula Mass

- Atomic Mass: a relative mass for \qquad atom based on a standard of at 12.00amu (atomic mass units)
- Formula Mass: sum of atomic masses in a
- Ex\#1. $\mathrm{H}_{2} \mathrm{O}=18.0 \mathrm{amu}$

$-\quad \mathrm{H}=1.0 \mathrm{amu}^{*} 2$ atoms H	$=_\quad \mathrm{amu}$
$-\quad+\mathrm{O}=16.0 \mathrm{amu}^{*} 1$ atom O	$=\quad \mathrm{amu}$
	$=\quad$

Formula and Molar Mass

- Ex. \#2 $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ (acetic acid) $=60.0 \mathrm{amu}$
- $\mathrm{H}=1.0 \mathrm{amu}$ *__ atoms H =__amu
- $\mathrm{C}=12.0 \mathrm{amu}^{*}$ _ atoms $\mathrm{C}=$ __amu
- $+\mathrm{O}=16.0 \mathrm{amu}$ * atoms $\mathrm{O}=\mathrm{amu}$
-

$=\quad$ __amu

- Molar Mass (gram formula mass/gfm): gram(g)
\ldots to formula mass that
represents a \qquad of particles. **Unit is
\qquad **

Percent Composition

- (Mass of Part/Mass of Whole)*100
- What is the \% composition of Glucose $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
- Find Molar Mass/Gram formula mass 1st
- Determine percentages separately (totaling 100% for all parts)
- $\mathrm{C}=12.0 \mathrm{amu}{ }^{*}$ __ atoms
__amu
- H= 1.0amu *___atoms ___amu
- $\mathrm{O}=16.0 \mathrm{amu}$ * atoms amu amu

$$
\begin{aligned}
& \% \mathrm{C}=(\quad \text { amu } / \\
& \text { amu)* } 100=40.0 \% \\
& \% \mathrm{H}=(\quad \text { __amul___amu)* } 100=6.7 \% \\
& \% \mathrm{O}=(\mathrm{amu} / \quad \mathrm{amu})^{*} 100=53.3 \% \\
& \text { 100\% }
\end{aligned}
$$

The Mole and Avogadro's Number 6.02*1023

- Avogadro's number \rightarrow 6.02* 10^{23} particles (atoms, molecules, formula units) equals
\qquad mole
- One mole of Lead(Pb) would have a molar mass of \qquad $\mathrm{g} / \mathrm{mol}$, while a mole of Carbon(C) would be \qquad $\mathrm{g} / \mathrm{mol}$
- Both 1 mole of Pb and C would have 6.02* 10^{23} atoms each (or any other element as well)

Molecules and Random Facts

- Molecules: are considered to be a whole unit
- Ex. 6.02* 10^{23} \qquad of $\mathrm{H}_{2} \mathrm{O}$ in a mole of water
- 6.02* 10^{23} molecules of H_{2} in a \qquad of hydrogen gas
- Random Avogadro facts:
- If you had a mole of pennies, you could give out a million dollars a day for 3000 years
- a mole of paper would be stacked beyond our solar system

Formula Units (ionic Compounds)

- Formula Unit: lowest \qquad of an lonic compound
- $6.02^{*} 10^{23}$ formula units in a mole of NaCl
- broken down into \qquad of ions
- 1 mole \qquad ion 1 mole \qquad ion
- 6.02* 10^{23} formula units in a mole of CaCl_{2}
- broken down into \qquad of ions
- __ mole \qquad ion _ moles \qquad ion

Molar Conversions

Mole Ratio's: ratio of moles within an equation

- Ex. $2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{I}) \rightarrow 4 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$
- __moles \rightarrow __moles + __moles
- 2:4:3 ratio exists here
- This is used to find moles/mass/volume/particles needed for, or produced in, a completed reaction with the factor label method

Mole Ratio's continued

- Ex. Ethane + oxygen \rightarrow Carbon dioxide + water
- $2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
- $\uparrow \# m o l C_{2} \mathrm{H}_{6} \quad \uparrow \# \mathrm{~mol} \mathrm{O} \mathrm{O}_{2} \quad \uparrow \# \mathrm{~mol} \mathrm{CO} 2 \quad \uparrow \# \mathrm{~mol} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$
- 2: 7: 4: 2 ratio exists
- Burning 2 moles of $\mathrm{C}_{2} \mathrm{H}_{6}$ results in \qquad mol of CO_{2}
- Burning 2 moles of $\mathrm{C}_{2} \mathrm{H}_{6}$ results in \qquad mol of $\mathrm{H}_{2} \mathrm{O}$

Mole Ratio's continued

- $2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow \quad 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
- Ex\#1 How many moles of water are produced from the combustion of 3 mol of ethane gas?
- Ex \#2 If 5 moles of ethane are burned, how much carbon dioxide is produced?

Empirical Formula

- \qquad whole number ratio of elements in a compound or molecule.
- Ex. Glucose $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow$
- Ex. $\mathrm{C}_{54} \mathrm{H}_{110}$ would be what?

Molecular Formula

- \qquad number of atoms in a compound or molecule
- Whole number \qquad of empirical formula
- Empirical formula glucose ($\mathrm{CH}_{2} \mathrm{O}$)
- Actual formula $\rightarrow 6\left(\mathrm{CH}_{2} \mathrm{O}\right) \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
- Ex.What is the molecular formula for β-carotene if its empirical formula is $\mathrm{C}_{5} \mathrm{H}_{7}$ and molar mass is $536 \mathrm{~g} / \mathrm{mol}$?
$-\mathrm{C}_{5} \mathrm{H}_{7} \rightarrow \quad \mathrm{~g} / \mathrm{mol}$
$-536 \mathrm{~g} /{ }_{_} \quad \mathrm{g}$ is a multiple of ${ }_{-} \rightarrow \ldots\left(\mathrm{C}_{5} \mathrm{H}_{7}\right)=$ \qquad

Other types of Formulas

- Structural Formulas: shows the \qquad , \qquad ,
\qquad and \qquad in a molecule (does not need to show lone pair \qquad
- Ex. 1 Glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right) \quad$ Ex. 2 Octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$

Other types of Formulas

- Condensed Structural Formulas: show
 atoms, but do not show all \qquad
- Ex. \#1 Ex. \#2

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{4} \mathrm{CHOCHCS}_{4} \mathrm{CH}_{4} \mathrm{CH}_{4} \mathrm{CH}_{4} \mathrm{CH}_{2} \mathrm{CH}_{3}$
CH_{3}

Other types of Formulas

- Skeletal Structures: show general \qquad of molecule and \qquad present, but not all \qquad
- Each bend represents a point where a \qquad atom would exist

Types of Chemical Reactions and Equations

- Word equation
$-\overline{\text { of oxygen yield }} \overline{\text { of Methane and }}$ of carbon dioxide and
- Formula equation
\qquad
- Reversible reaction
- Represented by a double arrow
- \qquad or \qquad

